Nonequilibrium molecular dynamics for bulk materials and nanostructures
نویسندگان
چکیده
We describe a method of constructing exact solutions of the equations of molecular dynamics in non-equilibrium settings. These solutions correspond to some viscometric flows, and to certain analogs of viscometric flows for fibers and membranes that have one or more dimensions of atomic scale. This work generalizes the method of objective molecular dynamics (OMD) (Dumitrică and James, 2007). It allows us to calculate viscometric properties from a molecular-level simulation in the absence of a constitutive equation, and to relate viscometric properties directly to molecular properties. The form of the solutions is partly independent of the form of the force laws between atoms, and therefore these solutions have implications for coarse-grained theories. We show that there is an exact reduction of the Boltzmann equation corresponding to one family of OMD solutions. This reduction includes most known exact solutions of the equations of the moments for special kinds of molecules and gives the form of the molecular density function corresponding to such flows. This and other consequences leads us to propose an addition to the principle of material frame indifference, a cornerstone of nonlinear continuum mechanics. The method is applied to the failure of carbon nanotubes at an imposed strain rate, using the Tersoff potential for carbon. A large set of simulations with various strain rates, initial conditions and two choices of fundamental domain (unit cell) give the following unexpected results: Stone–Wales defects play no role in the failure (though Stone–Wales partials are sometimes seen just prior to failure), a variety of failure mechanisms is observed, and most simulations give a strain at failure of 15–20%, except those done with initial temperature above about 1200K and at the lower strain rates. The latter have a strain at failure of 1–2%. & 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Molecular Dynamics of Heat Transfer and Quantum Mechanics
Molecular Dynamics (MD) is used in computational heat transfer to determine the thermal response of nanostructures. Finding basis in classical statistical mechanics, MD relates the thermal energy of the atom to its momentum by the equipartition theorem. Momenta of atoms in an ensemble are determined by solving Newton’s equations with inter-atomic forces derived from Lennard-Jones potentials. St...
متن کاملEffects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: Nonequilibrium molecular dynamics simulations
Thermal transport across interfaces is becoming increasingly important with the advent of nanostructures and nanocomposite materials. A nonequilibrium molecular dynamics (NEMD) approach is developed to investigate thermal transport across solid–solid interfaces. Thermal boundary conductance is calculated for a range of mismatched interfaces and compared to the diffuse mismatch model (DMM). The ...
متن کاملMechanical Properties of CNT-Reinforced Polymer Nano-composites: A Molecular Dynamics Study
Understanding the mechanism underlying the behavior of polymer-based nanocomposites requires investigation at the molecular level. In the current study, an atomistic simulation based on molecular dynamics was performed to characterize the mechanical properties of polycarbonate (PC) nanocomposites reinforced with single-walled armchair carbon nanotubes (SWCNT). The stiffness matrix and elastic p...
متن کاملSurface piezoelectricity: Size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials
In this work, using a combination of a theoretical framework and atomistic calculations, we highlight the concept of “surface piezoelectricity,” which can be used to interpret the piezoelectricity of nanostructures. Focusing on three specific material systems (ZnO, SrTiO3, and BaTiO3), we discuss the renormalization of apparent piezoelectric behavior at small scales. In a rather interesting int...
متن کاملMolecular Dynamics Simulation of Water in Single WallCarbon Nanotube
The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...
متن کاملSize Dependence of the Elastic Properties of Pd Nanowire: Molecular Dynamics Simulation
The mechanical properties including elastic stiffness constants as well as bulk modulus of Palladium (Pd) nanowire were calculated in the constant temperature and pressure (NPT), ensemble by molecular dynamics (MD) simulation technique. The quantum Sutton-Chen (Q-SC) many-body potential was used to calculate the cohesive energy as well as forces experience by every atoms. The temperature and pr...
متن کامل